A Novel Implementation of Dhage’s Fixed Point Theorem to Nonlinear Sequential Hybrid Fractional Differential Equation
نویسندگان
چکیده
In this work, the existence and uniqueness of solutions to a sequential fractional (Hybrid) differential equation with hybrid boundary conditions were investigated by generalization Dhage’s fixed point theorem Banach contraction mapping, respectively. addition, U-H technique is employed verify stability solution. This study ends two examples illustrating theoretical findings.
منابع مشابه
A solution of nonlinear fractional random differential equation via random fixed point technique
In this paper, we investigate a new type of random $F$-contraction and obtain a common random fixed point theorem for a pair of self stochastic mappings in a separable Banach space. The existence of a unique solution for nonlinear fractional random differential equation is proved under suitable conditions.
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملFixed-point theorem for Caputo–Fabrizio fractional Nagumo equation with nonlinear diffusion and convection
We make use of fractional derivative, recently proposed by Caputo and Fabrizio, to modify the nonlinear Nagumo diffusion and convection equation. The proposed fractional derivative has no singular kernel considered as a filter. We examine the existence of the exact solution of the modified equation using the method of fixed-point theorem. We prove the uniqueness of the exact solution and presen...
متن کاملApplication of Schauder fixed point theorem to a coupled system of differential equations of fractional order
In this paper, by using Schauder fixed point theorem, we study the existence of at least one positive solution to a coupled system of fractional boundary value problems given by { −D1 0+ y1(t) = λ1a1(t)f(t, y1(t), y2(t)) + e1(t), −D2 0+ y2(t) = λ2a2(t)g(t, y1(t), y2(t)) + e2(t), where ν1, ν2 ∈ (n− 1, n] for n > 3 and n ∈ N , subject to the boundary conditions y 1 (0) = 0 = y (i) 2 (0), for 0 ≤ ...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2023
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract7020144